Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 5-bromo-2-chloropyridine-3carboxylate

Yi Ma^a* and Ya-Lun Liu^b

^aSchool of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and ^bJinan China Cotton Industry Co. Ltd, Jinan 250100, People's Republic of China

Correspondence e-mail: yima_2008@yahoo.cn

Received 18 April 2008; accepted 6 May 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.014 Å; R factor = 0.045; wR factor = 0.131; data-to-parameter ratio = 8.4.

The title compound, C7H5BrClNO2, crystallizes with two independent molecules in the asymmetric unit. In the absence of classical intermolecular interactions, the crystal structure exhibits relatively short intermolecular Br...O distances [3.143 (9) and 3.162 (9)Å].

Related literature

For the biological activity of the title compound, see: Colarusso & Narjes (2004); Kim et al. (2006). For related crystal structures, see McArdle et al. (1982).

Experimental

Crystal data C7H5BrClNO2 $M_r = 250.48$

Triclinic, P1 a = 3.978 (2) Å

b = 8.153 (3) Å c = 14.040 (2) Å $\alpha = 96.89 (2)^{\circ}$ $\beta = 96.20 (3)^{\circ}$ $\gamma = 100.70 (2)^{\circ}$ $V = 440.2 (3) \text{ Å}^{3}$	Z = 2 Mo K\alpha radiation $\mu = 4.93 \text{ mm}^{-1}$ T = 298 (2) K $0.16 \times 0.14 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004) $T_{min} = 0.506, T_{max} = 0.638$	2186 measured reflections 1818 independent reflections 1564 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$
Refinement	
$R[E^2 > 2\sigma(E^2)] = 0.044$	H atom parameters constraine

H-atom parameters constrained
$\Delta \rho_{\rm max} = 1.17 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.90 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983);
70 Friedel pairs
Flack parameter: 0.01 (2)

Table 1

Selected interatomic distances (Å).

$Br1 \cdots O3^{i}$	3.143 (9)	$Br2 \cdot \cdot \cdot O1^{ii}$	3.162 (9)
Symmetry codes: (i) $x - 1, y$ -	-1, z + 1; (ii) x	-1, y, z - 1.	

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2402).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Colarusso, S. & Narjes, F. (2004). World Patent WO 04 110 442.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Kim, Y., Close, J., Duggan, M. E., Hanney, B., Meissner, R. S., Musselman, J., Perkins, J. J. & Wang, J. B. (2006). World Patent WO 06 060 108.

McArdle, J. V., de Laubenfels, E., Shorter, A. L. & Ammon, H. L. (1982). Polyhedron, 1, 471-474.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1072 [doi:10.1107/S1600536808013305]

Methyl 5-bromo-2-chloropyridine-3-carboxylate

Y. Ma and Y.-L. Liu

Comment

The title compound, (I), is a useful intermediate for the synthesis of various bioactive compounds (Colarusso *et al.*, 2004; Kim *et al.*, 2006). In this paper, we report its crystal structure.

Compound (I) crystallizes with two independent molecules in the non-centrosymmetric triclinic unit cell (Fig. 1). The bond lengths and angles in the molecules are normal and in a good agreement with those reported previously (McArdle *et al.*, 1982). The dihedral angles between the planes of the methoxycarbonyl group (C6/C7/O1/O2; C13/C23/O3/O4) and pyridine rings in the two independent molecules are 45.8 (2) and 44.0 (3)°, respectively. In the abscence of classical intermolecular interactions, the crystal packing exhibits relatively short intermolecular Br…O distances (Table 1).

Experimental

A solution of 5-bromo-2-hydroxynicotinic acid (0.138 mol) and N, *N*-dimethylformamide (0.138 mol) in thionyl chloride (160 mL) was refluxed for 2 h. Thionyl chloride was evaporated and the yellow residue dissolved in anhydrous dichloromethane (200 mL), then anhydrous methanol was added dropwise. The resulting mixture was refluxed for 1 h and evaporated to afford slightly yellow oil which crystallized upon standing at room temperature. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution at room temperature over a period of one week.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2-1.5$ times $U_{eq}(C)$.

Figures

Fig. 1. Two independent molecules of (I) with atomic numbering and displacement ellipsoids drawn at the 40% probability level.

Methyl 5-bromo-2-chloropyridine-3-carboxylate

Crystal data	
C7H5BrClNO2	<i>Z</i> = 2
$M_r = 250.48$	$F_{000} = 244$
Triclinic, P1	$D_{\rm x} = 1.890 {\rm Mg m}^{-3}$

Hall symbol: P 1 a = 3.978 (2) Å b = 8.153 (3) Å c = 14.040 (2) Å a = 96.89 (2)° $\beta = 96.20$ (3)° $\gamma = 100.70$ (2)° V = 440.2 (3) Å³

Data collection

Bruker SMART CCD area-detector diffractometer	1818 independent reflections
Radiation source: fine-focus sealed tube	1564 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.017$
T = 298(2) K	$\theta_{max} = 25.0^{\circ}$
ρ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -4 \rightarrow 3$
$T_{\min} = 0.506, \ T_{\max} = 0.639$	$k = -9 \rightarrow 9$
2186 measured reflections	$l = -14 \rightarrow 16$

Mo Kα radiation

Cell parameters from 947 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.6 - 24.3^{\circ}$

 $\mu = 4.93 \text{ mm}^{-1}$ T = 298 (2) K

Block, colourless

 $0.16 \times 0.14 \times 0.10 \text{ mm}$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0806P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.130$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.09	$\Delta \rho_{\text{max}} = 1.17 \text{ e } \text{\AA}^{-3}$
1818 reflections	$\Delta \rho_{\rm min} = -0.90 \ e \ {\rm \AA}^{-3}$
217 parameters	Extinction correction: none
3 restraints	Absolute structure: Flack (1983); 70 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.01 (2)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У		Ζ		Uiso*/	U_{eq}
Br1	0.3498 (2)	0.81123 (11)	0.74398 ((8)	0.052	3 (3)
Br2	0.3533 (3)	1.31291 (12)	-0.24715	5 (8)	0.053	0 (3)
Cl1	0.8539 (9)	0.7931 (4)		0.3331 (2	2)	0.055	2 (7)
Cl2	1.2578 (8)	1.5050 (4)		0.1624 (2	2)	0.055	5 (7)
01	1.083 (3)	1.2390 (10)		0.5287 (6	5)	0.074	(3)
O2	0.762 (2)	1.1535 (9)		0.3865 (5	5)	0.052	2 (19)
O3	1.295 (3)	1.8504 (10)		-0.0331	(6)	0.080	(3)
O4	1.116 (2)	1.8360 (9)		0.1109 (5	j)	0.052	9 (19)
N1	0.579 (3)	0.6646 (10)		0.4701 (7	')	0.050	(2)
N2	0.843 (3)	1.3036 (11)		0.0259 (7	')	0.053	(2)
C1	0.703 (3)	0.8099 (12)		0.4449 (7	')	0.040	(2)
C2	0.735 (3)	0.9674 (12)		0.5010 (7	')	0.037	(2)
C3	0.627 (3)	0.9656 (12)		0.5894 (7	')	0.038	(2)
НЗА	0.6454	1.0663		0.6303		0.045	*
C4	0.490 (3)	0.8134 (12)		0.6187 (7	')	0.042	(2)
C5	0.464 (3)	0.6665 (14)		0.5574 (8	3)	0.055	(3)
H5A	0.3658	0.5650		0.5764		0.066	*
C6	0.880 (3)	1.1312 (12)		0.4727 (7	')	0.043	(2)
C7	0.885 (3)	1.3097 (13)		0.3515 (8	3)	0.050	(3)
H7A	0.7729	1.3062		0.2869		0.076	*
H7B	1.1297	1.3255		0.3511		0.076	*
H7C	0.8330	1.4015		0.3931		0.076	*
C8	0.995 (3)	1.4644 (13)		0.0517 (8	3)	0.042	(2)
C9	0.973 (3)	1.5908 (12)		-0.0031	(7)	0.039	(2)
C10	0.783 (3)	1.5431 (12)		-0.0957	(7)	0.042	(2)
H10A	0.7706	1.6217		-0.1381		0.050	*
C11	0.616 (3)	1.3777 (12)		-0.1223	(7)	0.040	(2)
C12	0.647 (3)	1.2631 (13)		-0.0611	(8)	0.049	(3)
H12A	0.5287	1.1523		-0.0800		0.059	*
C13	1.144 (3)	1.7723 (13)		0.0234 (7	')	0.042	(2)
C14	1.289 (3)	2.0069 (11)		0.1478 (8	3)	0.047	(3)
H14A	1.2448	2.0350		0.2130		0.071	*
H14B	1.2055	2.0824		0.1079		0.071	*
H14C	1.5334	2.0172		0.1470		0.071	*
		5 7.					
Atomic displaceme	nt parameters (À	-)					
U	J ¹¹	U^{22}	U^{33}		U^{12}		U^{13}
Br1 0	.0550 (6)	0.0621 (6)	0.0479 (7)	0.0190 (5)		0.0166 (5)
Br2 0	.0487 (6)	0.0544 (6)	0.0496 (7)	0.0118 (4)		-0.0056 (5)
Cl1 0	.068 (2)	0.0575 (15)	0.0389 (1	4)	0.0144 (14)		0.0110 (12)

Cl2

0.067 (2)

0.0589 (16)

0.0397 (14)

0.0138 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

U²³ 0.0206 (5) -0.0094 (5)

-0.0012 (12)

-0.0028(12)

0.0113 (12)

supplementary materials

01	0.092 (7)	0.049 (4)	0.064 (5)	-0.012 (5)	-0.013 (5)	0.010 (4)
O2	0.058 (5)	0.050 (4)	0.047 (4)	0.005 (4)	0.004 (4)	0.013 (3)
O3	0.115 (8)	0.056 (5)	0.059 (5)	-0.019 (5)	0.029 (5)	0.005 (4)
O4	0.073 (6)	0.041 (4)	0.042 (4)	0.005 (4)	0.014 (4)	-0.001 (3)
N1	0.059 (7)	0.034 (5)	0.053 (6)	0.009 (4)	-0.006 (5)	-0.001 (4)
N2	0.066 (7)	0.044 (5)	0.048 (6)	0.007 (5)	0.012 (5)	0.011 (4)
C1	0.035 (6)	0.041 (6)	0.043 (6)	0.006 (4)	0.007 (5)	0.003 (5)
C2	0.033 (6)	0.037 (5)	0.040 (5)	0.005 (4)	-0.002 (4)	0.006 (4)
C3	0.042 (6)	0.041 (5)	0.031 (5)	0.011 (4)	0.007 (4)	0.006 (4)
C4	0.039 (6)	0.045 (6)	0.043 (6)	0.013 (4)	0.002 (4)	0.004 (4)
C5	0.057 (8)	0.047 (6)	0.057 (7)	0.005 (5)	-0.001 (5)	0.010 (5)
C6	0.043 (7)	0.044 (6)	0.035 (5)	0.005 (5)	-0.001 (4)	-0.001 (4)
C7	0.070 (8)	0.037 (6)	0.049 (7)	0.005 (5)	0.024 (6)	0.019 (5)
C8	0.049 (7)	0.039 (6)	0.041 (6)	0.015 (5)	0.015 (5)	0.002 (4)
C9	0.047 (6)	0.038 (5)	0.033 (5)	0.006 (5)	0.013 (4)	0.006 (4)
C10	0.051 (7)	0.039 (5)	0.037 (5)	0.011 (5)	0.012 (4)	0.005 (4)
C11	0.031 (6)	0.045 (6)	0.044 (6)	0.004 (4)	0.004 (4)	0.005 (4)
C12	0.049 (7)	0.042 (6)	0.052 (6)	0.003 (5)	0.009 (5)	-0.001 (5)
C13	0.038 (6)	0.049 (6)	0.039 (6)	0.007 (5)	0.006 (4)	0.011 (4)
C14	0.060 (7)	0.024 (5)	0.051 (7)	0.003 (5)	0.000 (5)	-0.004 (4)

Geometric parameters (Å, °)

Br1—C4	1.902 (11)	C3—C4	1.389 (14)
Br2—C11	1.902 (10)	С3—НЗА	0.9300
Cl1—C1	1.740 (10)	C4—C5	1.370 (15)
Cl2—C8	1.736 (12)	C5—H5A	0.9300
O1—C6	1.215 (11)	C7—H7A	0.9600
O2—C6	1.296 (11)	С7—Н7В	0.9600
O2—C7	1.439 (12)	C7—H7C	0.9600
O3—C13	1.215 (11)	C8—C9	1.368 (14)
O4—C13	1.299 (13)	C9—C10	1.403 (13)
O4—C14	1.441 (12)	C9—C13	1.494 (14)
N1—C1	1.302 (12)	C10-C11	1.376 (13)
N1—C5	1.351 (15)	C10—H10A	0.9300
N2—C8	1.327 (13)	C11—C12	1.357 (13)
N2—C12	1.346 (14)	C12—H12A	0.9300
C1—C2	1.400 (13)	C14—H14A	0.9600
C2—C3	1.357 (13)	C14—H14B	0.9600
C2—C6	1.471 (13)	C14—H14C	0.9600
Br1···O3 ⁱ	3.143 (9)	Br2…O1 ⁱⁱ	3.162 (9)
C6—O2—C7	119.8 (8)	Н7А—С7—Н7С	109.5
C13—O4—C14	119.5 (9)	H7B—C7—H7C	109.5
C1—N1—C5	117.0 (9)	N2—C8—C9	125.6 (11)
C8—N2—C12	116.7 (9)	N2	114.0 (8)
N1-C1-C2	125.8 (9)	C9—C8—Cl2	120.4 (8)
N1—C1—Cl1	113.3 (8)	C8—C9—C10	116.4 (9)
C2—C1—Cl1	120.9 (7)	C8—C9—C13	126.8 (9)

C3—C2—C1	116.1 (8)	C10—C9—C13	116.7 (8)
C3—C2—C6	118.3 (9)	C11—C10—C9	118.6 (8)
C1—C2—C6	125.6 (9)	C11-C10-H10A	120.7
C2—C3—C4	120.0 (9)	С9—С10—Н10А	120.7
С2—С3—НЗА	120.0	C12—C11—C10	120.1 (9)
С4—С3—Н3А	120.0	C12—C11—Br2	121.1 (7)
C5—C4—C3	119.2 (10)	C10—C11—Br2	118.8 (7)
C5—C4—Br1	121.0 (8)	N2—C12—C11	122.5 (9)
C3—C4—Br1	119.8 (7)	N2-C12-H12A	118.8
N1C5C4	122.0 (10)	C11—C12—H12A	118.8
N1—C5—H5A	119.0	O3—C13—O4	124.2 (9)
С4—С5—Н5А	119.0	O3—C13—C9	121.9 (9)
O1—C6—O2	123.3 (9)	O4—C13—C9	114.0 (8)
O1—C6—C2	121.6 (9)	O4C14H14A	109.5
O2—C6—C2	115.0 (8)	O4—C14—H14B	109.5
O2—C7—H7A	109.5	H14A—C14—H14B	109.5
O2—C7—H7B	109.5	O4—C14—H14C	109.5
H7A—C7—H7B	109.5	H14A—C14—H14C	109.5
O2—C7—H7C	109.5	H14B—C14—H14C	109.5
C5—N1—C1—C2	1.3 (16)	C12—N2—C8—C9	-0.8 (17)
C5—N1—C1—Cl1	178.3 (8)	C12—N2—C8—Cl2	-177.4 (8)
N1-C1-C2-C3	0.5 (16)	N2-C8-C9-C10	-2.7 (16)
Cl1—C1—C2—C3	-176.3 (7)	Cl2—C8—C9—C10	173.7 (8)
N1-C1-C2-C6	179.1 (9)	N2-C8-C9-C13	-179.3 (11)
Cl1—C1—C2—C6	2.4 (15)	Cl2—C8—C9—C13	-3.0 (15)
C1—C2—C3—C4	-1.0 (14)	C8—C9—C10—C11	4.3 (14)
C6—C2—C3—C4	-179.8 (10)	C13—C9—C10—C11	-178.7 (9)
C2—C3—C4—C5	-0.1 (15)	C9—C10—C11—C12	-2.6 (15)
C2—C3—C4—Br1	178.4 (8)	C9—C10—C11—Br2	179.2 (8)
C1—N1—C5—C4	-2.5 (16)	C8—N2—C12—C11	2.8 (16)
C3—C4—C5—N1	2.0 (16)	C10-C11-C12-N2	-1.1 (16)
Br1—C4—C5—N1	-176.5 (8)	Br2—C11—C12—N2	177.1 (9)
C7—O2—C6—O1	2.9 (18)	C14—O4—C13—O3	-3.9 (17)
C7—O2—C6—C2	179.6 (10)	C14—O4—C13—C9	175.8 (10)
C3—C2—C6—O1	43.6 (16)	C8—C9—C13—O3	133.7 (12)
C1—C2—C6—O1	-135.1 (12)	C10-C9-C13-O3	-42.9 (15)
C3—C2—C6—O2	-133.2 (10)	C8—C9—C13—O4	-46.0 (15)
C1—C2—C6—O2	48.2 (15)	C10-C9-C13-O4	137.4 (10)
Symmetry codes: (i) <i>x</i> -1, <i>y</i> -1, <i>z</i> +1; (ii)	x - 1, y, z - 1.		

Fig. 1

